MTP-LOD-62-7.2b June 20, 1962 Copy 66 of 82 Copies

HUNTSVILLE, ALABAMA


INSTRUMENTATION OPERATIONS ANALYS

PART IIb of the

FIRING TEST REPORT SATURN VEHICLE SA-2

CLASSIFICATION CHANGE

PACILITY FORM 602

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-TM-X-59368) INSTRUMENTATION PART 2E: SATURN OPERATIONS ANALYSIS. Firing Test Report (NASA) VEHICLE SA-2 17 p

N75-70833

Unclas 00/98 09151

SECURITY NOTE

This document contains information affecting the national defense of the United States within the meaning of the Espionage Law, Title 18, U.S.C., Sections 793 and 794 as amended. The transmission or revelation of its contents in any manner to an unauthorized person is prohibited by law.

GEORGE C. MARSHALL SPACE FLIGHT CENTER

MTP-LOD-62-7.2b

INSTRUMENTATION OPERATIONS ANALYSIS

PART IIb

of the

FIRING TEST REPORT

SATURN VEHICLE SA-2

ROBERT J. CESSAC


(U) ABSTRACT

This report presents the instrumentation systems operated in connection with the launch of Saturn Vehicle SA-2. The period and quality of recorded data for each system are given. Applicable data reduction information is also included. Performance of the instrumentation system used was satisfactory and preliminary analysis of recorded data indicated that the launch and flight were very successful.

Saturn Vehicle SA-2 was launched from Cape Canaveral on April 25, 1962 at 0900 hours 34 seconds EST.

Filly.

GEORGE C.	MARSHALL SPACE FLIGHT	CENTER
	MTP-L0D-62-7.2b	

INSTRUMENTATION OPERATIONS ANALYSIS

PART IIb

of the

FIRING TEST REPORT

(U)

Ву

Robert J. Cessac

This report contains 2 classified pages.

ELECTRONIC ENGINEERING, MEASURING AND TRACKING OFFICE LAUNCH OPERATIONS DIRECTORATE

TABLE OF CONTENTS

		Page
(U)	INTRODUCTION	1
(U)	SUMMARY OF INSTRUMENTATION PERFORMANCE	2
(U)	TELEMETRY	5
(U)	OPTICAL-METRIC CAMERAS Fixed Cameras Cine Theodolites	5
(U)	ELECTRONIC TRACKING Udop Radar Azusa	7 7 9
(U)	OTHER INSTRUMENTATION	9
(U)	DISTRIBUTION	15
	LIST OF ILLUSTRATIONS	
(C)	DATA COVERAGE	3
(C)	TRAJECTORY	4
(U)	CAPE INSTRUMENTATION	11
(U)	UPRANGE INSTRUMENTATION	12
(U)	EXTENDED RANGE INSTRUMENTATION	13

(U) INTRODUCTION

This report presents the instrumentation systems operated during the flight of Saturn Vehicle SA-2. There are three basic instrumentation systems: Telemetry, Optical Tracking, and Electronic Tracking. Under each system are listed the stations or sites operated, period and quality of recorded data, period of reduction and/or potential reducibility of the recorded data.

(U) SUMMARY OF INSTRUMENTATION PERFORMANCE

I. Telemetry

Good signals were recorded from launch to 162.56 seconds.

II. Optical Instrumention

A. Fixed Cameras

Good coverage was obtained from launch to 20.2 seconds

B. Cine Theodolites

Good track was maintained from launch to 127.0 seconds.

C. Attitude Data

Three tracking Mitchell's and one Theodolite were used for reduction of attitude data from 0 to 19.35 seconds.

III. Electronic Tracking

A. Udop

Good doppler data were recorded from launch to 162 seconds except for slight noise during cutoff.

B. Radar

Good track was maintained from launch to 162.6 seconds.

C. Azusa

Track was maintained from launch to 162 seconds.

Note: All times in this report are referenced to range zero unless otherwise indicated.

DATA COVERAGE

SYSTEM

C. O. INBOARD ENGINES 111.29 sec.

NOTE: ACTUAL TRAJECTORY PLOTTED FROM AZUSA DATA

TELEMETRY

(U) Receiver Stations Operated:

Hangar D Cape (Tel 3)
Blockhouse 34 G. B. I.
Cape (Tel 2)

Coverage:

(U)	Transmitter (Link Nr.)	Frequency	Period of Good Signal Recorded (seconds)
	. 1	242.0	0-162.56
	2	246.3	0-162.56
	3	248.6	0-162.56
	4	249.9	0-162.56
	5	252.4	0-162.56
	6	253.8	0-162.56
	7	256.2	0-162.56
	8	259.7	0-162.56

(U) Good signals were recorded by Hangar D, Tel 2 and 3 from 0 to 162.56 seconds. G. B. I. recorded signal from 43 to 162.6 seconds. The period from 43 to 46 seconds was noisy and hunting. The period from 46 to 162.6 seconds was good.

(U) Data Reduction:

Telemetry data were reduced and published by AMR from T minus 5 seconds to 163 seconds of flight. Data were processed through the TARE II equipment and then linerized through the IBM 7090 computer utilizing the TARE routine. Cyclic data, such as flowrates, were reduced using the doppler automatic reduction equipment (DARE) in conjunction with the 7090 computer.

(U) OPTICAL-METRIC CAMERAS Fixed Cameras

Coverage:

Stations Operated	Period of Track (sec.)		
34-3 (close in)	0.451 to 7.988		
34-4 (close in)	0.451 to 7.988		

(U) OPTICAL-METRIC CAMERAS Fixed Cameras (Continued)

Stations Operated	Period of Track (sec.)
U223L145E	0.451 to 17.260
U242L90N	0.451 to 19.828
U176L46N	0.451 to 20.662
19-2	0.451 to 20.662

Data Reduction:

Trajectory data with estimates of error were reduced and published by AMR from 0.451 to 20.662 seconds. Raw data from the stations above were used during times indicated in period of track column.

Attitude data (pitch and yaw) were reduced using tracking Mitchell U176L46, U142L160, U242L90, and Theodolite 1.10 from 0 to 19.350 seconds.

Attitude data (roll) were reduced using tracking Mitchell U176L46 from .449 seconds to 16.992 seconds.

(U) OPTICAL-METRIC CAMERAS Cine Theodolites

Coverage:

Stations Operated	Period of Track (sec.)	
1.10	4.5 - 45.0	
	54.25 - 99.25	
	102.75 - 127.25	
1.30	4.5 - 127.25	
1.40	2-128.75	
1.60	4.5 - 127.25	
1.70	47.0 - 123.0	
1.80	47.0 - 127.25	

Data Reduction:

Trajectory data with estimates of error were reduced and published by AMR from 4.5 to 127.25 seconds. Stations 1.10, 1.30, 1.60, 1.70, and 1.80 were used in the reduction as available. For availability see period of track under coverage above.

(U) ELECTRONIC TRACKING

Udop

Stations Operated:

Uprange System (NASA)

Downrange System (AMR)

Blockhouse 34
Blockhouse 26
Hangar D
Site C
Site B
Playalinda
Titusville Cocoa A/P
Merritt Island
Transmitter UTAH
MANDY

Little Carter Bassett Cove Great Sale Walker Cay Allens Cay

Coverage:

Good doppler data were recorded from launch to 162.5 seconds.

Data Reduction:

Trajectory data with estimates of error were reduced by AMR from 11.0 to 162.55 seconds.

Trajectory data with estimates of error were reduced by M.S.F.C. from launch to 162.56 seconds.

Reduction of downrange udop was not attempted since no timing was recorded on the tapes.

(U) ELECTRONIC TRACKING

Radar

Coverage:

Stations Operated	Approx. Period of Track (sec.)	Mode of Track
Mod II 1.3	21-182 (good) 182-206 (noisy)	Skin Skin

(U) ELECTRONIC TRACKING (Continued)

RADAR

Stations Operated	Approx. Period of Track (sec.)	Mode of Track
Mod II 1.5	0-162 (good)	Skin
Mod IV 1.1*	2-31 31-134	Infra-red Skin
Mod IV 1.2*	4-59 59-134	Infra-red Skin
FPS16 1.16	0-80 (good) 80-93 (noisy) 93-175 (good)	Beacon Skin Beacon
FPS16 1P.16	6-24 (no track) 24-104 (good) 104-162 (noisy and hunting) 162-192 (very noisy)	Skin Skin Skin
FPS16 3.16	45-58 (noisy and hunting) 58-162.5 (good) 162.56 (breakup, tracking pieces)	Beacon Beacon.
FPS16 3A.16	61-64 (noisy and hunting) 64-162 (good) 162-252 (very noisy) 252-276 (off track) 276-522 (noisy)	Beacon Beacon Beacon
Data Reduced:	·	
Stations Used	Period of Reduction (se	c.)
1.16	0-162.8	

Stations Used	Period of Reduction (sec.)	
1.16	0-162.8	
1P.16	24-111.2	
3A.16	64.5-162.8	

^{*}Coverage on these stations were taken from the preliminary estimate of data coverage by radar operators. Other coverage times were taken from radar function records.

(U) ELECTRONIC TRACKING

Azusa

Stations Used.

Azusa MK II

Coverage:

Good track was maintained from launch to 162.5 seconds.

Data Reduction:

Trajectory data were reduced and published by AMR from 15.0 to 162 seconds.

(U) OTHER INSTRUMENTATION

I. Range Safety Instrumentation

A. Telemetry ELSSE

Program site 20-107P maintained good track from 4 seconds to 162.5 seconds.

Flight line site 34-100F maintained good track from 6 seconds to 162 seconds.

B. Impact Predictor

The impact predictor performed satisfactorily throughout powered flight. Azusa data were used as input.

C. Radar Plotting Boards

Good plots were obtained from launch to 162.6 seconds.

II. Impact Instrumentation

Since the destruct systems were activated at 162.56 sec., (in conjunction with Project High Water) there was no impact except of debris remaining from vehicle break-up. For this reason, the impact data can not be realistically compared with the nominal trajectory.

The impact instrumentation for this test utilized the Cape 7090 computer with input data supplied by Mark II Azusa System.

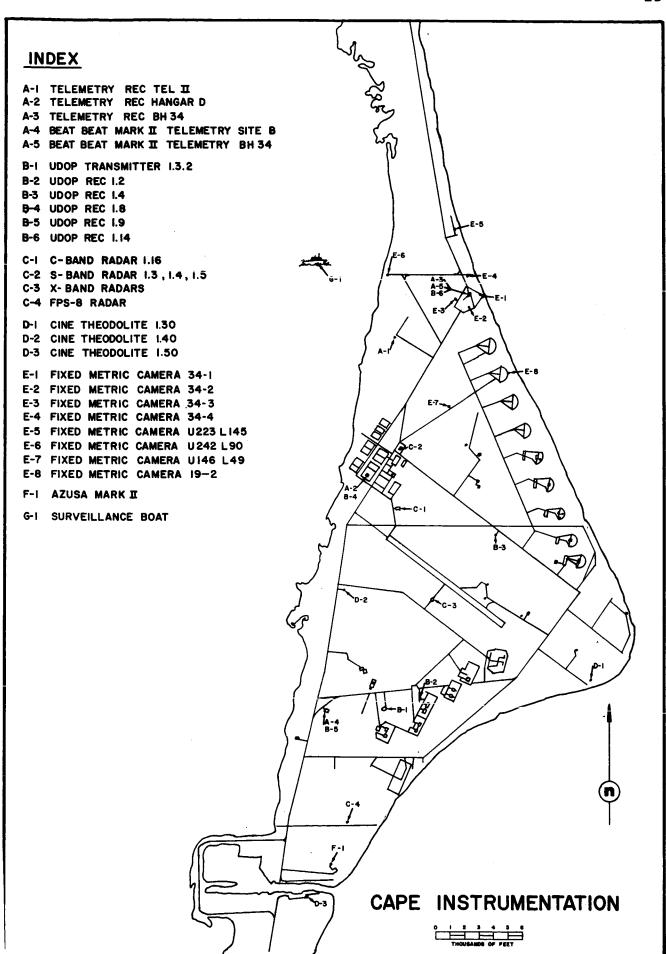
III. Optical Instrumentation

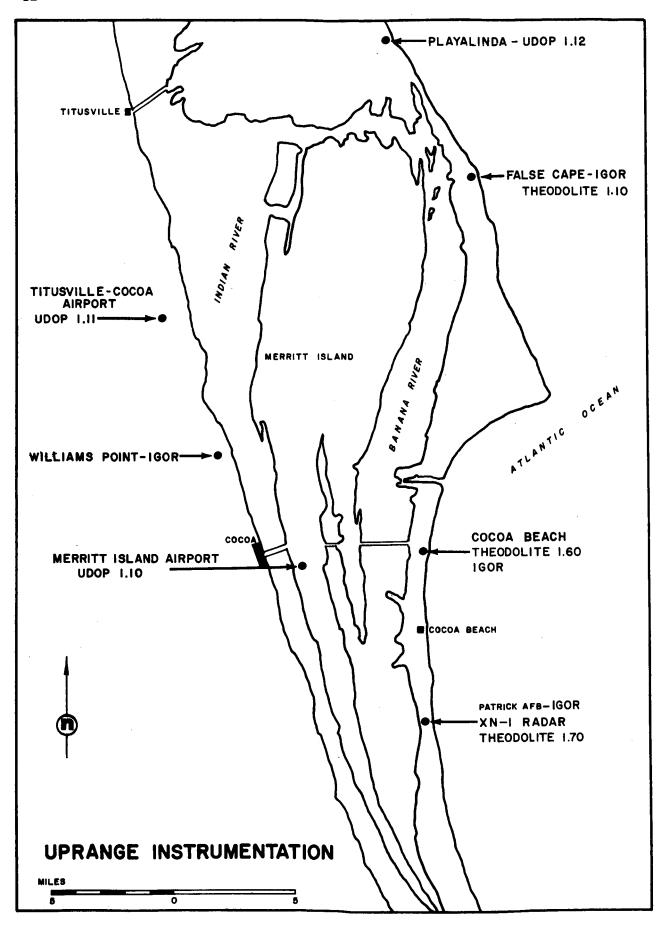
A. Engineering Sequential Cameras

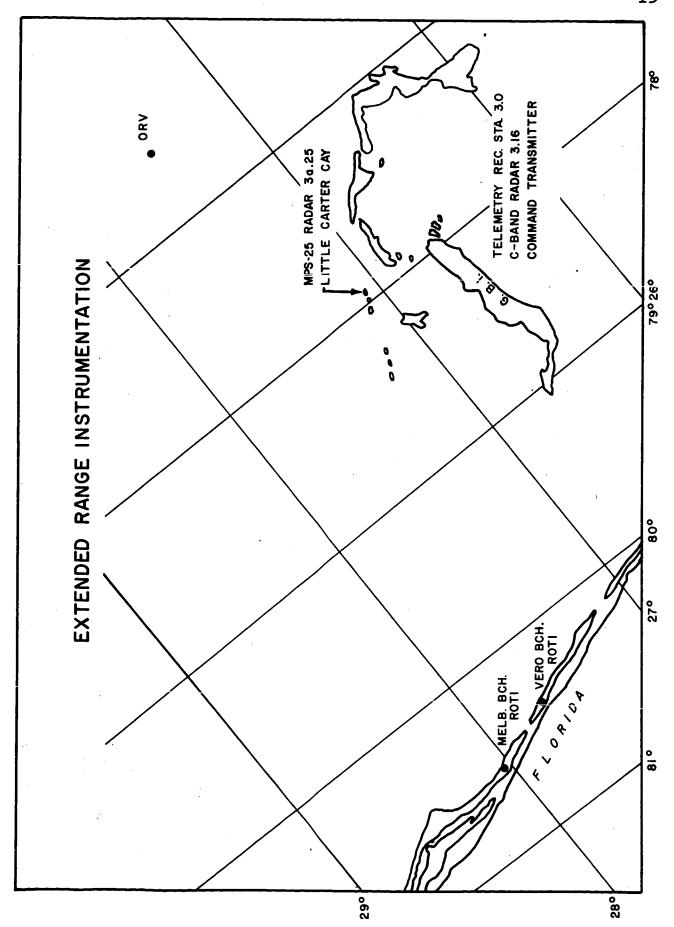
Number Operated: 67 Number of Failures: 2 Items 1.2-41 and 1.2-40 (Fixed for prelaunch coverage) obtained no coverage

B. Documentary Cameras

Number Operated: 34 Number of Failures: 0


IV. Project High Water


A. Engineering Sequential Cameras


Number Operated: 14 Number of Failures: 2 Items 3.2-2 and 3.2-3 (IGORs at G.B.I.) did not observe vapor cloud.

B. Documentary Cameras

Number Operated: 4 Number of Failures: 0

INSTRUMENTATION OPERATIONS ANALYSIS PART IIb of the FIRING TEST REPORT SATURN VEHICLE SA-2

PREPARED BY:

Robert J. Cessac

Robert J. Cessac

AST-Data Systems, Data Office

APPROVED:

Theodore P. Hershey

Chief, Data Office

Chief, Electronic Engineering Measuring and Tracking Office

KURT H. DEBUS

Director,

Launch Operations Directorate

(U) DISTRIBUTION

			Copies
Α.	Internal Distribut	ion	
	M-DEP-R&D	Deputy Director for R&D	1
	M-RP-DIR	Director, Research Projects Division	ī
	M-P&VE-DIR	Director, Propulsion & Vehicle Engineering Div.	1 1 3
	M-P&VE	Propulsion & Vehicle Engineering Div. Attn: B. K. Heusinger	1
	M-P&VE	Propulsion & Vehicle Engineering Div.	1
	M-COMP-DIR	Attn: W. C. Askew	7
	M-COMP-R	Director, Computation Division	1 1
	M-COMP-RM	Data Reduction Br., Attn: W. E. Moore	1
	M-AERO-DIR	Computation Div., Attn: R. J. Cochran Director, Aeroballistics Division:	i
	M-AERO-F	Flight Evaluation Br., Attn: J. P. Lindberg	ì
	M-AERO-F	Aeroballistics Div., Attn: J. G. Armstrong	1
	M-AERO-F	Aeroballistics Div., Attn. C. R. Fulmer	1
	M-AERO-F	Aeroballistics Div., Attn. C. K. I diller Aeroballistics Div., Attn. F. A. Speer	î
	M-AERO-G	Aerophysics & Astrophysics Br.	ī
	M-ASTR-DIR	Director, Astrionics Division	ī
	M-ASTR-I	Instr. Development Br., Attn: L. Bell	ī
	M-ASTR	Astrionics Div., Attn: C. M. McMahen, III	ĩ
	M-ASTR	Astrionics Div., Attn: J. Cox	ī
	M-ASTR	Astrionics Div., Attn: E. F. Noel	ī
	M-QUAL-P	Quality Div, Attn: S. M. Peck	ī
	M-QUAL-P	Quality Div., Attn: C. H. Covington	ĩ
	M-TEST-T	Systems Test Br., Attn: D. H. Driscoll	
	M-TEST	Test Division, Attn: K. H. Reilmann	ī
	M-SAT	Saturn Systems Office	1 1 5
	M-LOD-DIR	Director, LOD, CCMTA	1
	M-LOD-E	Ch, Electronic Engr, Meas & Tracking Office	1
	M-LOD-ED	Data Office	1
	M-LOD-EF	Flight Instr. Planning & Analysis Br	1
	M-LOD-EP	Project Coordination Staff, Attn: D.D. Collins	1 2
	M-LOD-CTR	Reports & Publications Section	2
	M-LOD-OL	Liaison Br, MSFC	1
	M-LOD-OA	Library	5
	M-LOD-H	Heavy Vehicle Systems	1
	M-LOD-SA	NASA Test Support Office, AMR	1
	M-MS-IP	Technical Publications Sec.	1
	M-MS-IPL	Technical Publications, Attn: Lois Robertson	8

В.

External Distrib	ution	Copies
ORDXM-RBL	Technical Library, AOMC	6
Administrator Mr. Franklyn Director, Off Director, Off Director, Off Director, Off	wtics & Space Administration, Washington 25, D.C. W. Phillips, Assistant to the Administrator ice of Scientific & Technical Information ice of Applications ice of Advanced Research & Technology ice of Space Sciences aned Space Flight	5 1 1 1 1
Director Dir, Laun	ch Vehicles & Propulsion ctor for Launch Operations (MLO)	1 1 1
Greenbelt, M	ce Flight Center aryland n: Mr. Herman LaGow	1
	es Research Center onautics & Space Administration I, California	1
	ngley Research Center onautics & Space Administration d, Virginia	1
-	·	1
National Aer	stern Operations Office onautics & Space Administration vd. Santa Monica, California	1
National A er	ght Research Center onautics & Space Administration 73, Edwards, California	1
-		1

DISTRIBUTION (Continued)

	DISTRIBUTION (Continued)	Copies
В.	External Distribution	0 0p.03
	Director, Wallops Station National Aeronautics & Space Administration Wallops Island, Virginia	1
	Office of the Asst. Sec. of Defense for Research and Engineering Room 3E1065 The Pentagon Washington 25, D.C. Attn: Tech Library	1
	Total Nr. of Copies	82